
ABSTRACT

SUPPRESSION OF COLLECTIVE QUANTUM JUMPS
OF RYDBERG ATOMS DUE TO COLLECTIVE SPONTANEOUS EMISSION

FROM ATOMS IN FREE SPACE

by Eitan Jacob Lees

We consider N driven, damped Rydberg atoms in different spatial arrangements. Treating
the atoms as two-level systems we model the coupling to the environment via the Lehmberg-
Agarwal master equation which interpolates between fully independent and fully collective
spontaneous emission depending on the specific locations of the atoms. We also include a
collective dipole-dipole energy shift in the excited Rydberg state which leads to collective
quantum jumps in the atomic excitation when the system is driven off resonance. We show
that the quantum jumps are suppressed as the system makes a transition from independent
to collective emission as the spacing of a linear array of atoms is decreased below the emission
wavelength.
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Chapter 1

Introduction

One of the interesting phenomena of quantum mechanics is the concept of a quantum jump,

where a system will switch between two discrete states. This behavior is most commonly

seen with respect to the electron transition between energy levels of an atom. I have been

studying the collective quantum jumps of Rydberg atoms. The large dipole moment of the

highly excited Rydberg atom causes a shift in the energy levels of surrounding atoms. This

shift suppresses the excitation of neighboring atoms when driven on resonance and this is

known as the Rydberg blockade [1] . My area of research pertains to collections of Rydberg

atoms that exhibit quantum jumps when driven off resonance. The collective behavior of

these many body quantum jumps is unique and an area of interest.

1.1 Quantum Jumps

At the beginning of the 20th century there were many new ideas brewing on the nature

of atoms and the physics of the very small. In the development of a basic model of an

atom Niels Bohr, with the help of Ernest Rutherford, hypothesised that electrons orbit the

nucleus in discrete circular paths [2]. A major hypothesis of his theory was that the electrons

make jumps between orbits while absorbing or emitting the appropriate amount of energy.

Though this description of an atom is now obsolete due to its simplicity, the Bohr model

was birthplace for the idea of the quantum jump.

The detailed description of the interaction of light and matter was one of the major

succeses during the development of quantum mechanics. One of the first theories of this

process was a statistical mechanics approach by Albert Einstein in which he defined his

famous A and B coefficients [3]. Einstein proposed that there were three factors pertaining

to the interaction of light and matter to produce spectral lines. The A coefficient represented

the spontaneous emission of an atom, the B coefficient represented the absorption of a
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photon as well as a new concept which he called stimulated emission. Stimulated emission

was regarded in the context of thermodynamics as a negative absorption. This is sometimes

regarded as the birthplace of the laser, and is considered the earliest mention of stimulated

emission [4]. Einstein utilized the theory of blackbody radiation to define a ratio of these

new coefficients. He set the ratio of A/B equal to the equilibrium radiation density per

unit volume per unit frequency, %(ν) = 8πhv3/c3, connecting his new theory with the rich

theories of thermodynamics.

The predictions of quantum mechanics have often been regarded as bizarre or unconven-

tional but through careful experiments the theory has passed all of the tests. The quantum

jump remained in the context of statistical mechanics for many years until a single jump was

directly observed by trapping a single ion [5, 6]. An ion was cooled and localized using two

collinear laser beams to a region of < 1µm and then a shelving process was used to observe

the jump. The 62S1/2-62P1/2 and the 52D3/2-62P1/2 were driven by two dye lasers. In order to

observe the jump the atom needed to be in the 52D5/2 state. This was achieved by a filtered

lamp that excited the atom to the 62P3/2 state and then it could decay into the 52D5/2 state.

The 62P1/2-62S1/2 transition was monitored using a photomultiplier tube of known quantum

efficiency. Clear jumps can be observed between two quantum states. They were shown

to happen in a single jump rather than occurring in steps which implied that a single ion

was trapped. The direct observation of quantum jumps further solidified the foundations of

quantum theory and also pushed the experimental techniques to new heights. The dynamics

of a single atom as it absorbs and emits light is a subject that is at the heart of quantum

optics. The formalism outlined to describe an open quantum system as it evolves is known

as a quantum trajectory [7]. Quantum Optics currently has both the theoretical framework

and the experimental techniques to explore the most fundamental questions about how light

and matter interact.

My work is focused specifically on the dynamics of collections of Rydberg atoms. In recent

years Rydberg atoms have been promising candidates for qubits in quantum computers [8,

9] and offer exciting opportunities for future technologies. A theoretical paper by Tony E.

Lee, H. Häffner, and M.C. Cross [10] studied the dynamics of collective Rydberg quantum

jumps though they have not been experimentally observed yet. They showed that there

is a dispersive bistability for collections of Rydberg atoms and that quantum fluctuations

drive the jumps between these stable states. The two level optical Bloch equations were

solved under the assumption of a mean field theory to better understand the source of the

bistability. Quantum trajectories were utilized to explore the characteristics of these jumps

including jump length, excitation population density and excitation population vs emission

number. They showed that the number of successive photon emissions was an indicator that

2



a collective jump was going to occur. If successive photons were emitting then the system

would jump to a “Bright” state and with the absence of emissions the system would return

to a “Dark” state. I have built on this study by introducing a geometric components into

the Hamiltonian and running my simulation for various geometric arrangements of atoms.

Whether the system emits photons through fully independent spontaneous emission or fully

collective spontaneous emission has shown to have a major effect on the dynamics of the

system which has been explored.

1.2 Thesis Outline

The main focus of this thesis is to explore the properties of collections of Rydberg atoms but

first the theoretical background of open quantum systems is explained. The Lindblad form

of the master equation is derived and also a brief description of the algorithms of quantum

trajectories is given. Next the specifics of my model are detailed including the implementa-

tion of an intermediate model for the emission type. An over view of the QuTiP framework

is explained in the context of my project. Results are presented from the probe spectra, cross

correlations, and quantum trajectories explored for my research. Statistics were performed

on the quantum trajectories to characterize the collective quantum jumps such as average

jump length and total jump count. Finally a conclusion is provided suggesting future plans

for the project. An appendix is also included detailing the code used to produce figures and

make various simulations.
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Chapter 2

Dissipative Quantum Systems

Many systems are unavoidably tied to an environment which leads to dissipation. The

methods to incorporate dissipation into quantized systems were an area of much interest in

the development of quantum optics. The methods and problems approached in the study of

open quantum systems is related to the study of spontaneous emission. We are going to use

these tools to model independent and collective spontaneous emission.

2.1 Interaction Hamiltonian

The Hamiltonian for a system coupled to the environment is written as a sum of three terms,

H = Hs +HR +HsR (2.1)

where Hs represents the system of interest, HR represents the environment, and HsR repre-

sents the coupling between the two. Let the term χ(t) represent the density operator for the

combination of our system and environment. Thus our density matrix for the system alone

is expressed as a trace over our environmental variables ρ(t) ≡ TrR[χ(t)]. This allows us to

calculate the expectation value of a system operator Ô such that

〈Ô〉 = TrsR[Ôχ(t)] = Trs{ÔTrR[χ(t)]} = Trs[Ôρ(t)] (2.2)

requiring only the information of ρ(t) instead of the full χ(t). Now our goal is to solve the

Schrödinger equation,

χ̇ = − i
h̄

[H,χ] (2.3)

with this coupled system, eq. (2.1), and obtain an expression for ρ(t). Before we directly

solve eq. (2.3) we need to consider a different perspective.
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In quantum mechanics there are several ways to deal with the time dependence of the

system. The Schrödinger picture is when all of the time dependence is wrapped up in the

state vector and the operators are constant in time. The Heisenberg picture is when the

state vectors are constant in time and the operators take on all of the time dependence.

We will need to share the time dependence between the operators and the state vector.

This is known as the interaction picture. The motivation for this different perspective is

that Hs + HR generate time evolution on a short time scale whereas HsR moves relatively

slowly so it is useful to separate these time scales. Going to the interaction picture the state

becomes

χ̃(t) = e
i
h̄

(Hs+HR)tχ(t)e−
i
h̄

(Hs+HR)t (2.4)

which can be used to solve for dynamics. The Schrödinger equation in the interaction picture

now becomes

˙̃χ(t) = e
i
h̄

(Hs+HR)t d

dt

[
χe−

i
h̄

(Hs+HR)t
]

+
i

h̄
(Hs +HR)e

i
h̄

(Hs+HR)tχe−
i
h̄

(Hs+HR)t

= e
i
h̄

(Hs+HR)t

[
− i
h̄
χ(Hs +HR)e−

i
h̄

(Hs+HR)t + χ̇e−
i
h̄

(Hs+HR)t

]
+
i

h̄
(Hs +HR)e

i
h̄

(Hs+HR)tχe−
i
h̄

(Hs+HR)t

= − i
h̄
χ̃(Hs +HR) + e

i
h̄

(Hs+HR)tχ̇e−
i
h̄

(Hs+HR)t +
i

h̄
(Hs +HR)χ̃

=
i

h̄

[
Hs +HR, χ̃

]
+ e

i
h̄

(Hs+HR)t

(−i
h̄

)
[H,χ] e−

i
h̄

(Hs+HR)t

=
i

h̄

[
Hs +HR, χ̃

]
+ e

i
h̄

(Hs+HR)t

(−i
h̄

)
[Hs +HR +HsR, χ] e−

i
h̄

(Hs+HR)t

= − i
h̄
e

i
h̄

(Hs+HR)t (HsR
χ− χHsR) e−

i
h̄

(Hs+HR)t

= − i
h̄
e

i
h̄

(Hs+HR)tHsR

(
e

i
h̄

(Hs+HR)te
−i
h̄

(Hs+HR)t
)
χe−

i
h̄

(Hs+HR)t

+
i

h̄
e

i
h̄

(Hs+HR)tχ
(
e

i
h̄

(Hs+HR)te
−i
h̄

(Hs+HR)t
)
HsRe

− i
h̄

(Hs+HR)t

= − i
h̄

[
H̃sR, χ̃

]
(2.5)

noting that we have inserted 1 in the form of e
i
h̄

(Hs+HR)te
−i
h̄

(Hs+HR)t twice in the commutator

so that we could define

H̃sR ≡ e
i
h̄

(Hs+HR)tHsRe
−i
h̄

(Hs+HR)t (2.6)

an interaction picture coupling Hamiltonian term. After such a simplification there is time
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dependence in both the state and the operators but we have eliminated the Hamiltonian

terms for the system and the environment. We are left with a Schödinger equation in the

interaction picture in terms of our state and only the coupling Hamiltonian, eq. (2.5).

2.2 Lindblad Master Equation

Now we need to integrate our state over time and trace over the reservoir to obtain an

expression for ˙̃ρ ∫ t

0

d

dt
χ̃dt′ =− i

h̄

∫ t

0

[
H̃sR(t′), χ̃(t′)

]
dt′

χ̃(t) = χ(0)− i

h̄

∫ t

0

[
H̃sR(t′), χ̃(t′)

]
dt′ (2.7)

which will be our master equation in the interaction picture. Now plugging our expression

for χ̃(t), eq. (2.7), back in to our expression for ˙̃χ , eq. (2.5), we have

˙̃χ(t) = − i
h̄

[
H̃sR(t), χ̃(0)

]
− 1

h̄2

∫ t

0

[
H̃sR(t),

[
H̃sR(t′), χ̃(t′)

]]
dt′ (2.8)

which is important to note is still an exact expression. We have done some convenient

transformation to mathematically isolate our coupling Hamiltonian but this expression still

fully describes our system.

The first assumption is made here when we assert that at our initial time there is no

correlations between s and R thus χ(0) = ρ(0)R0,

TrR χ̃(t) = TrR

[
e

i
h̄

(Hs+HR)tχ(t)e−
i
h̄

(Hs+HR)t
]

= TrR

[
e

i
h̄
Hste

i
h̄
HRtχ(t)e−

i
h̄
HRte−

i
h̄
Hst
]

= e
i
h̄
Hst TrR

[
e

i
h̄
HRtχ(t)e−

i
h̄
HRt
]
e−

i
h̄
Hst

= e
i
h̄
Hst TrR

[
χ(t)e−

i
h̄
HRte

i
h̄
HRt
]
e−

i
h̄
Hst

= e
i
h̄
Hstρ(t)e−

i
h̄
Hst

= ρ̃(t) (2.9)

allowing for a trace over our environment to leave us with the interaction density matrix for

our system. If we now assume that the interaction starts at the initial time t, thus it can be

said that χ(0) = χ̃(0). To achieve an expression for our master equation we need to trace
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on our state, eq. (2.8), over our environment,

˙̃ρ(t) = TrR
˙̃χ(t)

= − i
h̄

TrR

[
H̃sR(t), ρ(0)R0

]
− 1

h̄2

∫ t

0

TrR

[
H̃sR(t),

[
H̃sR(t′), χ̃(t′)

]]
dt′ (2.10)

noting that we have also plugged in the initial condition assumption. We now assume that

the reservoir operators have zero mean the state R0,

TrR

[
H̃sR(t), ρ(0)R0

]
= 0 (2.11)

which can generally arranged by how we build our Hamiltonian. This leaves us with a master

equation in the form

˙̃ρ(t) = − 1

h̄2

∫ t

0

TrR

[
H̃sR(t),

[
H̃sR(t′), χ̃(t′)

]]
dt′ (2.12)

with which we will now have to make some approximations to achieve the familiar Lindblad

form.

2.3 Born-Markov Approximation

Now some approximations of our system will be made. First we assume that the coupling

of s and R is very weak and that due to the large size of R, the system s has little affect on

R. We will expand our state

χ̃(t) = ρ̃(t)R0 +O(HsR) (2.13)

keeping only 2nd order terms in HsR. We arrive at the form of the master equation that is

known as the Born Approximation

˙̃ρ(t) = − 1

h̄2

∫ t

0

TrR

[
H̃sR(t),

[
H̃sR(t′), ρ̃(t′)R0

]]
dt′ (2.14)

by plugging eq. (2.13) into the master equation, eq. (2.12).

Our last approximation has to do with the relative timescales of events. A state in such

a system, with a bath like environment, quickly loses information but rarely gets it back.

For example it is very likely that the atom will emit a photon into the surrounding space

but it is very unlikely that the photon will ever make it back to the atom if it is in open

space. It is thought to be approximately a one way process. A Markovian process is one
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which only depends on the current state of the system and has no history. We achieve

this approximation by letting ρ(t′) → ρ(t) and acknowledging that our environment has no

memory. This leads to the final form of our master equation known as the Born-Markov

Approximation

˙̃ρ(t) = − 1

h̄2

∫ t

0

TrR

[
H̃sR(t),

[
H̃sR(t′), ρ̃(t)R0

]]
dt′ (2.15)

describing a quantum system weakly coupled to it’s environment.

Lastly if the form of our interaction Hamiltonian can be written as a linear combination

of system operators and environment operators HsR = h̄
∑

i siΓi then we can make a final

expansion to achieve a familiar form of the master equation

˙̃ρ(t) = −
∫ t

0

∑
i,j

TrR

[
s̃i(t)Γ̃i(t),

[
s̃j(t

′)Γ̃j(t
′), ρ̃(t)R0

]]
dt′

= −
∫ t

0

∑
i,j

dt′{[s̃i(t)s̃j(t′)ρ̃(t)− s̃j(t′)ρ̃(t)s̃i(t)] 〈Γ̃i(t)Γ̃j(t′)〉

+ [ρ̃(t)s̃j(t
′)s̃i(t)− s̃i(t)ρ̃(t)s̃j(t

′)] 〈Γ̃j(t′)Γ̃i(t)〉} (2.16)

noting here that the 〈Γ̃j(t′)Γ̃i(t)〉 ∝ δ(t− t′). The assumption that the environmental oper-

ators, Γ̃, effectively become deltas is because of the vast difference in time scales. The slow

dynamics of the system and the fast decay of the reservoir correlation function justify this

assumption. Thus we have finally derived the Lindblad super operator, L, which describes

a open dissipative quantum system. In the interaction picture we can define the Lindblad

super operator which acts on a density matrix ρ such that

L(Ô)ρ = ÔρÔ† − 1

2

(
Ô†Ôρ+ ρÔ†Ô

)
(2.17)

where Ô is the collapse operator. Before we continue we will redefine L to it’s most general

form in the Schrödinger picture

ρ̇ = Lρ (2.18)

with

L =
1

ih̄
[Hs, · ] +

∑
j

γj
2

(2Ôj · Ô†j − Ô†jÔj · − · Ô†jÔj) (2.19)

noting the reintroduction of the Hamiltonian which was mathematically eliminated in the

interaction picture derivation of the Schrödinger equation, eq. (2.5). It is this form of the

master equation which will be used to describe our collection of Rydberg atoms.
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2.4 Quantum Trajectories

Our treatment of the master equation in the previous section is a valid approach to describing

our open quantum systems, but ultimately they are ensemble-averaged quantities. If our goal

is to study quantum stochastic processes then we need a new approach, which is outlined

by Carmichael [7], known as Quantum Trajectories. The goal of such a model, as with most

of quantum optics, is to describe the interaction of light and matter focusing specifically

on the quantum dynamics. In an ideal system where all of the scattered photons can be

recovered one can define the density matrix in an interesting way. If our system is written

in the familiar Lindblad form, eq. (2.18), then we need to define our state at a sum over all

possible scattering event. This is an attempt to unravel the density operator as

ρ(t) =
∑

REC

P (REC) |ψREC(t)〉 〈ψREC(t)| (2.20)

where |ψREC(t)〉 is a conditional state of a single scattering event in the system s. P (REC)

is the probability for a specific scattering even to occur. It is important to note that this is

a full record of the specific sequence of scattering events such that∑
REC

P (REC) = 1 (2.21)

leaving all scattering events possible.

To describe a stochastic system that exhibits quantum jumps similar to the ones Bohr

and Einstein attempted to model we must consider a Monte Carlo approach to our system.

First let’s introduce the algorithm and then discuss the important components.

Quantum Trajectory Algorithm (for a two state system)

Calculate jump probability: p↓ =
∑

i γi〈O†iOi〉∆t
Generate a uniformly distributed random number, rk such that 0 < rk ≤ 1

if p > rk then

Pick Jump based on a weighted probability of pi = γi〈O†iOi〉∆t
Apply Jump: |ψ〉 → Oi |ψ〉

else

Evolve with non-Hermitian Hamiltonian: |ψ〉 → |ψ〉 − i
h̄
HB |ψ〉∆t

where p↓ is the total probability for a jump to occur and pi is the probability for the ith

collapse operator to be applied. Oi are the collapse operators associated with the system.
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It’s important to note that there can be many jump operators for a system but one is needed.

HB is a non-Hermitian Hamiltonian defined as

HB = H − ih̄
∑
i

γi
2
O†iOi (2.22)

that is needed to model the results of a null measurement. If jump doesn’t occur over a

period of time the probability that the atom is in the excited state decreases. This is a result

of the Bayesian statistics used to describe our system. The quantum trajectory algorithm is

general in the sense that it can be used to describe the evolution of a state that is starting

in a specific quantum state |1〉, |2〉 or a superposition of (|1〉+ |2〉) without knowledge of the

initial state.

Given these considerations the system will exhibit similar stochastic processes which

we are attempting to model. After significant time evolution we will generate a record of

scattering events

REC ≡
{
...

...
, ∅, γ↓j

Tk−1
, ∅, γ↓j

Tk
, ∅, γ↓j

Tk+1
, ∅, γ↓j

Tk+2
, ∅,

...

...

}
(2.23)

where ∅ represents regular time evolution, γ↓j represents the jth collapse operator being

applied and TK is the time when that jump occurs. It is this method which is used to study

the collective quantum jump of Rydberg atoms in my simulations.
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Chapter 3

Collective Rydberg Systems

Many recent publications have highlighted the experimental methods of trapping and inter-

acting with small collections of Rydberg atoms [11, 12]. These advancements motivate the

study of many body Rydberg systems. For our models we will be exploring the collective

nature of these systems and interesting phenomena that emerges.

3.1 Hamiltonian

For our model we will consider a system of N driven, damped, two-level Rydberg atoms in

various geometric configurations. Making the electric dipole and rotating wave approxima-

tions the Hamiltonian in the interaction picture is (h̄ = 1)

H =
N∑
j=1

[
−∆|e〉〈e|j +

Ω

2
(σj+ + σj−)

]
+

V

N − 1

N∑
j<k=1

|e〉〈e|j ⊗ |e〉〈e|k (3.1)

where σj− is the Pauli lowering operator for the jth atom, ∆ = ω`−ω0 is the detuning of the

driving laser from the atomic resonance, Ω is the Rabi frequency, and V is a constant that

accounts for the long range interaction between the Rydberg atoms in their excited states.

Note that the term involving the Rydberg interaction is only summed for each pair of atoms

and thus the limits are j < k = 1.

An interesting phenomenon is the possibility of a two photon excitation (fig. 3.1a). When

the first atom is excited to a Rydberg state, the surrounding atoms experience a shift in

their respective energy levels due to the van Der Waals interaction. This energy shift would

introduce a Rydberg blockade which would suppress all excitations after the first atom is

excited. This is a familiar behavior that has been studied at length for cold Rydberg atoms

[13]. Now if we run our simulation for a wide enough range of detunings from the atomic
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Figure 3.1: Energy level diagrams for Rydberg systems. (a) Shows how a two atom system
is more likely to make a two photon excitation when driven off resonance. (b) Shows the
more complicated diagram for three atoms arranged in a line.

resonance, ∆, there will be an increased probability of a two photon excitation for specific

detunings. This makes the two photon excitation more favorable than others and is a place

where collective jumps are more likely to occur. This scenario was observed for two atoms

when our detuning was half of our Rydberg shift, ∆ = V/2. For many atoms there are more

possibilities for more atoms to be excited in these type of multiphoton excitations. The

defining characteristic of this system is the relative distance each atom is from it’s nearest

neighbor. The further the atoms are away from each other the less of a shift will occur and

thus the Rydberg effects will be reduced. Creating an energy level diagram for a line of three

atoms (fig. 3.1b) becomes more complicated due to the many neighbors that have varying

affects. Notice that the shift between the first and the second atoms and the shift between

the second and the third atom are equal but the first and third Rydberg shift is reduced

because of the increased distance.
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3.2 Collapse Operators

We include damping in our system using the familiar Linbald form of the master equation

derived in the Born-Markov approximation eq. (2.18). For independent spontaneous emission

we use the collapse operator σj− thus we have:

ρ̇ = −i [H, ρ] +
γ

2

N∑
j=1

(2σj−ρσj+ − ρσj+σj− − σj+σj−ρ) (3.2)

Note that each atom has its own individual collapse operator. For collective spontaneous

emission a collective collapse operator was utilized where J− =
∑N

j=1 σj− to allow for fully

collective emission.

ρ̇ = −i [H, ρ] +
γ

2
(2J−ρJ+ − ρJ+J− − J+J−ρ) (3.3)

An intermediate option was also explored where the system could be varied between fully

collective and fully independent spontaneous emission. This was accomplished by introducing

a γij term that was used to define the spontaneous emission of a set of dipoles.[14, 15]

γij = γ
3

2

{
[1− (d̂ · r̂ij)2]

sin ξij
ξij

+ [1− 3(d̂ · r̂ij)2]

(
cos ξij
ξ2
ij

− sin ξij
ξ3
ij

)}
(3.4)

where

ξij ≡ k0rij = 2πrij/λ0, rij = rij r̂ij ≡ ri − rj (3.5)

We only looked at cases where all of the dipoles were arranged in a plane and thus (d̂· r̂ij) = 0

simplifying our calculation. It is important to note that there is an oscillatory nature to

the γij matrix as a function of R and this could have interesting effects on our system.

The eigenvalues, λi, and eigenvectors, ~vi, where calculated for the γij matrix and used to

determine the collapse operators for our system by

Ji =
√
λi

N∑
j

~vijσj− (3.6)

where Ji is the ith collapse operator, similar to σj− and not to be confused with the collective

operator J−. It was important to check the behavior of this equation at limiting cases to make

sure it would approach independent and collective emission for large and small separation

distances, respectively (fig. 3.2). For a system that is separated by a large distance, R� 1,

the off diagonal terms of our γij matrix approach zero creating matrix similar to the identity

matrix. Matrices of this form have eigenvalues that are all 1 and eigenvectors with only a
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Independent case:

1 0 . . .
0 1 . . .
...

...
. . .

 =⇒ all λi → 1

Collective case:

1 1 . . .
1 1 . . .
...

...
. . .

 =⇒ one λ→ N

Figure 3.2: The coupling matrix γij takes on different forms for the limits of the separation
distance. For R� 1 the system is independent and for R� 1 the system is collective.

single nonzero value. Using eq. (3.6) to build the collapse operators the system mimics the

behavior of the independent spontaneous emission case.

At the other limit, R � 1, where our distances become very small the off diagonal

terms of the γij matrix would all approach 1 creating a matrix composed entirely of ones,

sometimes referred to as the all-ones matrix. Matrices of this from have only a single nonzero

eigenvalue that approaches the value of N . This creates a jump operator with a value that

when multiplied by our normalized eigenvectors leaves us with just a sum of σj− which is

the correct collapse operator for collective spontaneous emission. Using this method we can

explore the dynamics of our system as it moves from an independent regime to a collective

regime.

3.3 Geometry

We ran our simulation for a range of detunings to generate a probe spectrum for a line,

triangle and square configurations (fig. 3.3).The Rydberg interaction, V , was changed from

a originally being a constant for all atoms to a function of distance. The Euclidean distance

was calculated for all pairs of atoms and then the amount the energies were shifted was

calculated with appropriate scaling. Both a 1/r6 and a 1/r3 case was used to define the

interaction range and the Rydberg interaction was multiplied by the scale factor. For each

configuration the separation distance was also varied to study how the changing Rydberg

shifts affected the probe spectrum. Making this change required that each interaction be

defined in a term Vij rather than having a single V term define the total interaction for all

atoms. By changing this interaction behavior the geometry and characteristic separation

distance of the system becomes an important factor. The number of nearest neighbors

14
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Figure 3.3: Atomic configurations for a triangle, square, and a line of atoms. The geometry
of the system affects the magnitude of the Rydberg shift and is important to consider.

interactions adds to the magnitude of the shift in energy levels. I also calculated some atom-

atom cross correlations, g
(2)
ij (0), and stochastic collective quantum jumps for independent,

collective, and intermediate spontaneous emission.

The geometry of the system defines how the energy levels shift. For example an equilateral

triangle (fig. 3.3a) will have constant V because all of the atoms are equally spaced. In fact

this is the only geometry for N > 2 for which this is the case. A square will not have

interactions of all the same magnitude with the (fig. 3.3b). Only the two nearest neighbors

will contribute similar shifts. The energy shift for a line of three atoms (fig. 3.3c) would be

the same for the first and second atom as well as the second and third atom but less for the

first and third. Taking into account these nearest neighbors interactions helps us to better

understand the system.
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Chapter 4

Quantum Toolbox in Python

For this project the Quantum Toolbox in Python (QuTiP) was used heavily [16] . QuTiP

has defined a class for quantum objects (Qobj) where they can be manipulated with familiar

quantum routines such as .dag() for taking the dagger of a state or operator and .unit()

for normalization. The Qobj also contains important information such as whether they are

Hermitian and shape to ensure consistent quantum simulations. There are many familiar

quantum objects built into QuTiP , such as the Pauli matrices (fig. 4.1), which were used

to build our collective collapse operator. Utilizing this framework, performing quantum

simulations becomes very similar to the way you would write out the mathematics and

minimizes the learning curve.

>>> qutip.sigmax()

Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True

Qobj data =

[[ 0. 1.]

[ 1. 0.]]

Figure 4.1: Shown above is an example of the basic output for a printed Qobj in this case
the Pauli spin operator σx

4.1 Time Evolution

There are built in algorithms for time evolution; specifically the master equation, mesolve,

and the Monte Carlo quantum trajectory function, mcsolve, were used to study the dynamics

of our system. The mesolve function takes in a Hamiltonian, an initial state and a list of time

you want your system to evolve over. If you want to add dissipation to your system there is a

parameter for the collapse operators which is what we changed to replicate independent and
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collective emission. Expectation values can also be calculated for each time step through

the expectation parameter. The mcsolve function takes similar parameters but also will let

you control the number of trajectories made. In our case we followed a single trajectory

over many lifetimes to see the bistability. QuTiP returns an object called Results which

contains lots of important information. If no expectation values were requested then you

will receive an array of your state at every time step. If you did provide an expectation

value to calculate you will receive a value for every time step. If you are performing mcsolve

you will also receive information about when and which collapse operator was used for every

trajectory. This information was useful in exploring the dynamics of our system as we could

see that many successive applications of our collapse operators lead to a jump event.

QuTiP has many other features for visualization and quantum simulations. Included on

the website are many tutorials which detail how to perform many calculations. QuTiP is

still under active development and released QuTiP 3.1.0 on Dec 31, 2014.
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Chapter 5

Results

5.1 Probe Spectrum

The preliminary form of analysis was to calculate a probe spectrum of our system in a steady

state for a wide range of detunings. The expectation value 〈σi+σi−〉 was calculated as a

function of detuning of the laser to explore where multiphoton excitations were more likely to

occur when our system was being driven off resonance. Probe spectra were made for various

parameters including independent and collective spontaneous emission types (Fig. 5.1).
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Figure 5.1: We plot the probability to excite 1 or 2 atoms for N = 2, γ = 1, V = 8, and
Ω = 4 for (a) independent spontaneous emission and (b) collective spontaneous emission

The bump seen at ∆/γ = 4 is a result of a two photon excitation discussed earlier

due to the Rydberg blockade. Upon comparison of fig. 5.1a and fig. 5.1b, there is some

insight into why different emission type changes the excitation probability. The single photon

excitation was reduced by collective emission but the two photon behavior was enhanced.
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The probability to have one atom in the excited state is reduced when the emission type is

made collective because it is now emitting twice as fast due to the collective nature of the

emission. The atoms also absorbs light and become excited twice as fast because the driving

is always collective. If both atoms are excited and then one of them emits collectively it

becomes an entangled state which has enhanced emission and absorption. For independent

emission the single atom excited state following emission does not have enhanced emission

and absorption. Therefore probability that both atoms are excited is enhanced when the

emission is made collective and the probability of single atom excitation is inhibited.
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Figure 5.2: In both figures the parameters are γ = 1, V = 8, and Ω = 4 with N changing
based on the shape. (a) A probe spectrum of a triangle of atoms with 1, 2, or 3 atoms
excited. A probe spectrum of a 3x3 square of atoms with 1, 2, 3, 4, 5, 6, 7, 8, or 9 atoms
excited.

Further studies of the excitation probabilities were explored by increasing N , the numbers

of atoms in the system. The energy shift associated with the dipole-dipole interaction has

a strong dependence on distance so various geometries of atoms were studied (Fig. 5.2).

A variable energy shift was introduced into the Hamiltonian, Vij for all of the pairs of

atoms. Probe spectra were made for shapes such as a line, triangle, square, and a larger

3 by 3 square of atoms. The probe spectra of the more complicated geometries were harder

to directly analyze but did provide a good starting place to understand how the system

responds to various detunings as well as a changing distance. This method could be further

expanded into three dimensions but careful consideration must be taken with respect to how

the intermediate emission collapse operators are defined , eq. (3.4), because (d̂ · r̂ij) 6= 0.

The distances were varied to see for what distances the Rydberg interaction dominated.

Animations were made showing how the system evolves as a function of distance. The
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energy required to excite multiple atoms was increased due to the larger Rydberg effect

for short distances. This behavior lead to interesting dynamics when animated causing the

peaks to shift to the right and spread further apart as separation distance decreased.

5.2 Cross Correlations

We calculated the normalized atom-atom intensity cross correlation

g
(2)
ij (0) =

〈σi+σi−σj+σj−〉
〈σi+σi−〉〈σj+σj−〉

. (5.1)

Note that for both collective and independent emission the master equation is symmetric

with respect to exchange of atom labels so it does not matter which pair of atoms we use.

For our adaptive spontaneous emission case where the emission type can vary this symmetry

is not true.

We characterized the intensity fluctuations by plotting the atom-atom cross correlation

g
(2)
ij (0) in fig. 5.3. A value of g

(2)
ij (0) = 1 would correspond system of discrete events happening

completely uncorrelated, exhibiting shot noise. For values of g
(2)
ij (0) > 1 events would be

bunched and we would expect to see more noise in our system. Therefore we were looking

for a peak in the g
(2)
ij (0) plot representing a stronger possibility of collective jumps.
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Figure 5.3: We plot the atom-atom cross correlation for independently emitting groups of
atoms. (a) g

(2)
ij (0) for just two atoms. (b) g

(2)
ij (0) for a triangle of atoms. The bump seen for

the triangle case is where a three photon resonance would be expected.

These correlations can be predicted by analysing the Rydberg term of our Hamiltonian.

Let’s examine at the case of an equilateral triangle of atoms . The leading term V/(N − 1)
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would be the same for a two photon or three photo excitation, in this case 5. Now we need to

multiply by the number of pairs of excited atoms and then divide by the number of photons

needed to reach that state. For the case of the two photon excitation there is only one pair

of excited atoms and it takes 2 photons to reach the state, so we would expect a bump at

5/2 = 2.5. For the three photon excitation there are three pairs of excited atoms and it

would take a total of three atoms to make the excitation so we would also expect a bump

a 5(3/3) = 5. Both of these results are seen in the cross correlation plot for the triangle

configuration (fig. 5.3b). These cross correlation plots can be more revealing of the nature

of the system when more atoms are introduced.

5.3 Collective Quantum Jumps

To have these Rydberg atoms exhibit collective quantum jumps an even larger number of

atoms was considered as the effect scales with N . To explore the state of a single quantum

trajectory a Monte Carlo method was implemented in QuTiP (mcsolve). The excitation

population of the system was computed over many life times. The simulation was run for a

wide range of separation lengths from R = 100 to R = 0.1 (fig. 5.4) where R is a fraction of

the emission wavelength, λ.
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Figure 5.4: Collective jumps between a low excitation “dark” state and a high excitation
“bright” state, for N = 16,∆ = 3.5,Ω = 1.5, V = 8. Note 〈E〉 ≡ 〈σ+σ−〉. (a) separation
distance is R = 0.5 and (b) separation distance is R = 0.115, where R is a fraction of the
emission wavelength, λ

As the atoms get closer together their emission type becomes more like collective sponta-

neous emission and the quantum jumps seem to be diminished. The size of the fluctuations

21



are on a similar order as the normal background and no collective jumps to a bright state

seem to have occurred. Either the jumps maybe be more spread out over many lifetimes or

the system is in the bright state for a much shorter time.

Jump statistics were studied to characterized the disappearance of the collective jumps. A

single quantum trajectory was run for 10, 000/γ so that many jump events could be studied.

The expectation value of the excitation population 〈σ+σ−〉, which we defined as 〈E〉, was

calculated to determine if our system was in a “bright” or “dark” state. A jump event was

characterized by choosing an arbitrary cutoff value and counting when our expectation value

crossed this point. In our case the value 0.2 was used to calculate jump statistics. For a

typical trajectory there were ∼400 jump events which could be varied by performing longer

runs. The jump length was calculated for each jump event to characterize how long the

system stayed in the bright state.
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Figure 5.5: (a) Average jump length for a wide range of separation distances. Note that
the average jump length approaches the independent jump length for large values of R. (b)
Average excitation population density shows the optical bistability. The parameters for all
of the runs are: N = 16,∆ = 3.5,Ω = 1.5, V = 10

Average jump length was calculated to show that the bistablity is inhibited for short

separation distanced and that for large separation distances is similar to the independent case

(fig. 5.5a). An interesting phenomenon is that for distances 0.3 < r < 1.0 the jump length is

enhanced which is an unexpected result. A histogram of the excitation population was also

made to better quantify the optical bistability (fig. 5.5b). Notice that for larger separation
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distances the population density is shared between two peaks. There is a common strong

peak at around 〈E〉 = 0.05 but for larger separation some of the distances the population

density is moved to a peak around 〈E〉 = 0.35. These correspond well to the “bright” and

“dark” states observed in fig. 5.4.
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Figure 5.6: Excitation population for 16 atoms for various separation distances. (a) r = 0.1,
(b) r = 0.2, (c) r = 1.0, (d) r = 1.0 but it is the fully independent emission case. Notice
how for small R the jumps are greatly diminished. Parameters used N = 16,∆ = 3.5,Ω =
1.5, V = 10

The longer 10, 000 γ runs (fig. 5.6) are shown to be inhibited for short separation distances.

This shows that the intermediate emission model correctly interpolates between the fully

independent and collective regime. Note that the fully independent case (fig. 5.6d) is very
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similar to the intermediate case separation distance of R = 1.0 (fig. 5.6c) but as the distance

is shortened the bistability becomes weaker. At R = 0.2 (fig. 5.6b) there are still some short

jumps that almost disappears at R = 0.1 (fig. 5.6a) which is what is expected for the fully

collective regime.

5.4 Optical Bloch Solutions

An explanation for the bistability comes from analysing the optical Bloch equations for a

system of two level atoms. One can show the dynamics for such a system are

˙̄ρee = −Ω Im ρ̄eg − γρ̄ee (5.2)

˙̄ρeg = i (∆− V ρ̄ee) ρ̄eg −
γ

2
ρ̄eg + iΩ

(
ρ̄ee −

1

2

)
(5.3)

under a mean-field theory approach. It is important to note that the mean-field theory

approach assumes that the density matrix factorizes by atom,

ρ =
N⊗
j=1

ρj (5.4)

and therefore there are no correlations between the atoms. When we attempt to describe

our system with collective emission under the same framework this assumption breaks down.

We will first look at the steady state for the independent emission case. Setting eq. (5.2)

equal to zero we find

γρ̄ee = −Ω Im ρ̄eg (5.5)

and plugging eq. (5.5) into eq. (5.3) gives

0 = i

(
∆ + V

Ω

γ
Im ρ̄eg

)
ρ̄eg −

γ

2
ρ̄eg + iΩ

(
−Ω

γ
Im ρ̄eg −

1

2

)
(5.6)

to be our steady state equation. We now will assume that ρ̄eg is a complex number of the

form ρ̄eg = a+ ib and plug that into eq. (5.6),

0 = i

(
∆ + V

Ω

γ
b

)
(a+ ib)− γ

2
(a+ ib) + iΩ

(
−Ω

γ
b− 1

2

)
0 = i

(
∆ + V

Ω

γ
b

)
a−

(
∆ + V

Ω

γ
b

)
b− γ

2
a− iγ

2
b+ iΩ

(
−Ω

γ
b− 1

2

)
(5.7)
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giving an expression for the steady state of ρ̄eg. By gathering the appropriate terms,

0 = −
(

∆ + V
Ω

γ
b

)
b− γ

2
a (5.8)

0 =

(
∆ + V

Ω

γ
b

)
a− γ

2
b+ Ω

(
−Ω

γ
b− 1

2

)
(5.9)

we can split up ρ̄eg into real and imaginary parts. We can now solve eq. (5.8) for a and plug

it into eq. (5.9)

a = −2

γ

(
∆ + V

Ω

γ
b

)
b (5.10)

0 = −2

γ

(
∆ + V

Ω

γ
b

)2

b− γ

2
b+ Ω

(
−Ω

γ
b− 1

2

)
(5.11)

eliminating a from our solution. We already have an expression, eq. (5.5), for which we can

replace b with

γρ̄ee = −Ωb

b = − γ
Ω
ρ̄ee (5.12)

from the optical Bloch equations discussed earlier. Plugging our expression for b, eq. (5.12),

into eq. (5.11) we find

0 = −2

γ

(
∆ + V

Ω

γ

(
− γ

Ω
ρ̄ee

))2 (
− γ

Ω
ρ̄ee

)
− γ

2

(
− γ

Ω
ρ̄ee

)
+ Ω

(
−Ω

γ

(
− γ

Ω
ρ̄ee

)
− 1

2

)

0 =
2

Ω
(∆− V ρ̄ee)2 ρ̄ee +

γ2

2Ω
ρ̄ee + Ω

(
ρ̄ee −

1

2

)
(5.13)

which represents the solutions to our steady state system. We now need to solve eq. (5.13) in

order to understand the stability of our system. Mathematica was utilized to solve eq. (5.13)

which showed showed multiple stable points in our system (fig. 5.7). Typically there will

be one stable point and two unstable points leading to a stable steady state solution being

one of the tails of the graphs. Collective jumps occure when there are two stable solutions

and one unstable solution caused by driving off resonance. It is this region of the detuning

which are interested in. Plots of the solutions, such as fig. 5.7a, were made in Mathematica

utilizing the Manipulate function allowing us to easily see how different parameters affected

the bistability.
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Figure 5.7: (a) The 1st, 2nd, and 3rd solution for the independent case for V = 12,Ω =
3, γ = 1 and (b) the collective case for V = 20,Ω = 5, γ = 1, N = 16

For collective emission we utilized a counting argument to understand how adding more

atoms to the system affected the optical Bloch equations. Following a similar argument to

the derivation of the independent steady state solutions, eq. (5.13), we find for collective

emission the steady state is represented by solutions to

0 =

(
ρ̄ee −

1

2

)
+

2

Ω2
ρ̄ee

[
(∆− V ρ̄ee)2 +

γ2

4
(2(N − 1)ρ̄ee −N)2

]
(5.14)

noting that eq. (5.14) is of the same form as eq. (5.13) with a correction of the spontaneous

emission term, γ → γ(2(N −1)ρ̄ee−N), which introduced the N dependence on our system.

Studying the behavior of the collective emission case showed that the bistability should go

aways for a system of 16 atoms which was expected. We then constructed a situation in which

the bistability would still occur for given eq. (5.14), and ran quantum trajectories at those

detunings. The expected result was that the jumps would return but the jumps were still

missing. This put in question the validity of the mean-field theory when modeling collective

systems. The major assumption that the density matrix factorizes by atom, eq. (5.4), breaks

down because collective nature of the system directly implies correlations between the atoms.

A new mathematical framework is needed to understand how the system behaves under

collective emission and this is an area of future research.
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Chapter 6

Conclusion

We explored collective quantum jumps of Rydberg atoms by first performing a probe spec-

trum and atom-atom cross correlations. The dependence on separation distance as well as

geometry was studied. An intermediate case for the collapse operator was introduced allow-

ing us to interpolate between fully independent and fully collective spontaneous emission.

Quantum trajectories were simulated utilizing QuTiP Monte Carlo methods (mcsolve) for

a wide range of separation distances to see how the changing collapse operators inhibited

collective jumps. Average jump lengths were calculated to quantify the transition and his-

tograms of excitation population were made to better visualize the optical bistability. We

have shown through our analysis that the introduction of collective spontaneous emission

suppresses the collective quantum jumps in groups of Rydberg atoms.

Quantum jumps have been an area of interest since the birth of quantum mechanics and

still offers interesting research today. Along with the recent developments with respect to

the trapping and manipulation of collections of Rydberg atoms, there are many interesting

new systems to be explored. My study of the collective quantum jumps of Rydberg atoms

is important in understanding the systems that could one day be used in the quantum

computing technologies of the future.

6.1 Future Work

There is still work to be done on my model with respect to geometric factors. Along with

generalizing to more dimensions other distance dependent variable can be parameterized

such as the Rydberg interaction term V . By making the interaction vary based on distance,

V → Vij, as one would expect for a dipole-dipole interaction term, interesting behavior is

expected. As the atoms move closer together their emission becomes more collective which

inhibits the collective jumps but the larger the shift in the energies the more likely there is for
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jumps to occur. We want to see for what conditions are jumps still shown as distance is varied

and Vij competes with the increasing collective emission effect. The relationship between

the inhibition of the jumps as the emission becomes more collective and the enhancement of

the jumps as the Rydberg interaction gets stronger is a topic that still needs to be explored.

I would like to better characterize the inhibition of jumps to build a better understanding

of this transition.

There are still unanswered question for future research such as exactly why the emission

type inhibits jumps. Optical bistabilites have been studied for many years and there is further

reading that could offer insight. The region of enhanced jump length for 0.3 < R < 1.0 is an

unexplored phenomenon which seems to indicate there is an interesting interaction between

the emission type and the strength of the optical bistability in this system.
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Appendix A

jumps.py

A main program was made to separate repeated function in able to make varying parameters

easier.

import header as hd

import qutip as qt

import numpy as np

import random as rd

import matplotlib.pylab as plt

import itertools

import datetime

import os

import sys

import pickle

from scipy.spatial.distance import pdist

from scipy.spatial.distance import squareform

starttime = datetime.datetime.now()

author = "Eitan Lees"

save_as = "test"

pkl_str = save_as + ".p"

csv_str = save_as + ".csv"

n = 4

R = 0.001

params = [] # Parameter list
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params.append(n) # [0] n - number of atoms

params.append(np.linspace(R, R, 1)) # [1] R - Seperation Distance

params.append([3.5]) # [2] dlist - Detuning list

params.append(10) # [3] V - Rydberg shift

params.append(1.5) # [4] omega - Driving

params.append(’corrected collective’) # [5] Etype - Emission type

params.append(np.linspace(0,100,1000)) # [6] tlist - Time

#raising and lowering ops

sigmaplist, sigmamlist = hd.get_sigma(params[0])

#Building all of the Psi operators

psi = list(itertools.product([0, 1], repeat=params[0]))

psi0, psi_psi = hd.build_psi(params[0], psi)

jumplist = []

op = sigmaplist[0]*sigmamlist[0]

for i in range(1,params[0]):

op += sigmaplist[i]*sigmamlist[i]

jumplist.append(op/params[0])

# Building Shape and Distance matrix

x_dist = hd.n_line(params[0], params[1][0])

dist_mat = squareform(pdist(x_dist))

# Building Collaps Operators and Shift matrix

collaps = hd.make_collapse(dist_mat, params[5], sigmamlist)

shift = hd.V_edit_rn(dist_mat, 3)

# Building Hamiltonian and running Monte Carlo solver

HAM = hd.hamiltonian(params, sigmaplist, sigmamlist, shift)

all_data = hd.mc_jump(HAM, psi0, params[6], collaps, jumplist)

# Saving data

print ("Let’s save the data")

pickle.dump( all_data, open( pkl_str, "wb" ) )

endtime = datetime.datetime.now()

total_time = endtime - starttime
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hd.save_data(params, all_data.expect, csv_str, author, total_time)

print (’DONE’)

#

#

# plt.plot(params[6], all_data[0][0])

# plt.show()
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Appendix B

header.py

A header file was imported into the main program to increase readability. Some functions

here are not explicitly used in the main program up were used in earlier versions to do probe

spectrum’s and other preliminary results.

from __future__ import division

import qutip as qt

import numpy as np

import random as rd

import pylab

import time

import datetime

import matplotlib.pyplot as plt

import itertools

def get_shape(shape, a):

"""

# Returns an array of points for a given shape

# Input : shape - string of shape

# a - charateristic distance

#

# Output: x - np.array of the coordinates

"""

if shape == "triangle":

x = np.array([[0, 0], [a, 0],

[a / 2, a / 2 * np.sqrt(3)]])

if shape == "square":

x = np.array([[0, 0], [0, a],
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[a, a], [a, 0]])

if shape == "line":

x = np.array([[0, 1 * a], [0, 2 * a],

[0, 3 * a], [0, 4 * a]])

if shape == "3x3":

x = np.array([[0, 2 * a], [1 * a, 2 * a], [2 * a, 2 * a],

[0, 1 * a], [1 * a, 1 * a], [2 * a, 1 * a],

[0, 0 * a], [1 * a, 0 * a], [2 * a, 0 * a]])

return(x)

def n_line(n, a):

"""

# Returns an array of points for a line of ’n’ atoms

# with equadistand seperations of ’a’

# Input : n - string of shape

# a - charateristic distance

#

# Output: x - np.array of the coordinates

"""

x = np.zeros((n,2))

for i in range(n):

x[i] = [0, i*a]

return(x)

def get_sigma(n):

"""

# raising and lowering ops

# Input : n - Number of atoms

#

# Output : sigmaplist - List of sigma plus operators

# sigmamlist - List of sigma minus operators

"""

sigmamlist = []

sigmaplist = []

for j in range(n):

if j == 0:

sigmajm = qt.sigmam()
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else:

sigmajm = qt.qeye(2)

for i in range(1, n):

if j == i:

sigmajm = qt.tensor(qt.sigmam(), sigmajm)

else:

sigmajm = qt.tensor(qt.qeye(2), sigmajm)

sigmamlist.append(sigmajm)

sigmajp = sigmajm.dag()

sigmaplist.append(sigmajp)

return(sigmaplist, sigmamlist)

def G2_ops(P, M):

top = []

bottom = []

for i in range(len(P)):

for j in range(len(P)):

if i != j:

top.append(P[i]*P[j]*M[i]*M[j])

# else:

# top.append(P[i]*M[i]*P[j]*M[j])

bottom.append(P[i]*M[i])

return(top, bottom)

def build_psi(n, psi):

"""

# Building all of the |Psi><Psi| operators

# Input : n - Number of atoms

# psi - An array of all binary combinations

#

#

# Output : psi0 - Initial State (all down)

# psi_psi - List of |psi><psi|

"""

psi_psi = []

for i in range(0, len(psi)):

if psi[i][0] == 1:

x = qt.basis(2, 0)
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if psi[i][0] == 0:

x = qt.basis(2, 1)

for j in range(1, n):

if psi[i][j] == 1:

x = qt.tensor(x, qt.basis(2, 0))

if psi[i][j] == 0:

x = qt.tensor(x, qt.basis(2, 1))

psi_psi.append(x * x.dag())

psi0 = qt.basis(2, 1)

for i in range(1, n):

psi0 = qt.tensor(psi0, qt.basis(2, 1))

return(psi0, psi_psi)

def V_edit(dist_mat, emission_type, sigmamlist):

"""

# V-Edit

# Input : dist_mat - Matrix of distance from

# atom i to atom j

# emission_type - "independent"

# "collective"

# "corrected collective"

#

# Output: shift - Matrix of Rydberg energy shifts

# collaps - List of collaps operators

"""

size = len(dist_mat)

gamma_2 = 1

d_hat = 1

lamda = 1

r_hat = 0

shift = np.zeros((size, size))

termA_del = np.zeros((size, size))

termA_gam = np.zeros((size, size))

termB_del = np.zeros((size, size))

termB_gam = np.zeros((size, size))

xi = 2 * (np.pi) * dist_mat

for i in range(len(xi)):

for j in range(len(xi)):
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if i != j:

x = (1 - 3 * (d_hat * r_hat) ** 2)

termB_del[i][j] = (x * (np.sin(xi[i][j]) / xi[i][j] ** 2

+ np.cos(xi[i][j]) / xi[i][j] ** 3))

termB_gam[i][j] = (x * (np.cos(xi[i][j]) / xi[i][j] ** 2

- np.sin(xi[i][j]) / xi[i][j] ** 3))

termA_del[i][j] = (-(1 - (d_hat * r_hat) ** 2)

* np.cos(xi[i][j]) / xi[i][j])

termA_gam[i][j] = ((1 - (d_hat * r_hat) ** 2)

* np.sin(xi[i][j]) / xi[i][j])

for i in range(size):

for j in range(size):

if i != j:

shift[i, j] = (1/dist_mat[i, j]**6)

#shift = gamma_2 * (3 / 4) * (termA_del + termB_del)

Gam = gamma_2 * (3 / 2) * (termA_gam + termB_gam)

#### Building Collaps Ops with gamma ####

#### but first we have to fix gamma ####

np.fill_diagonal(Gam, 1)

lam, vec = np.linalg.eigh(Gam)

J = []

for i in range(len(vec)):

tot = 0

for j in range(len(vec)):

tot += vec[j][i] * sigmamlist[::-1][j]

J.append((lam[i] ** 0.5) * tot)

if emission_type == "independent":

collaps = sigmamlist # Indeptdent

if emission_type == "collective":

collaps = sum(sigmamlist) # Collective

if emission_type == "corrected collective":

collaps = J # The Gamma correction

return(shift, collaps)

def make_collapse(dist_mat, emission_type, sigmamlist):

"""

# V-Edit

# Input : dist_mat - Matrix of distance from
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# atom i to atom j

# emission_type - "independent"

# "collective"

# "corrected collective"

#

# Output: shift - Matrix of Rydberg energy shifts

# collaps - List of collaps operators

"""

size = len(dist_mat)

gamma_2 = 1

d_hat = 1

lamda = 1

r_hat = 0

shift = []

termA_gam = np.zeros((size, size))

termB_gam = np.zeros((size, size))

xi = 2 * (np.pi) * dist_mat

for i in range(len(xi)):

for j in range(len(xi)):

if i != j:

x = (1 - 3 * (d_hat * r_hat) ** 2)

termB_gam[i][j] = (x * (np.cos(xi[i][j]) / xi[i][j] ** 2

- np.sin(xi[i][j]) / xi[i][j] ** 3))

termA_gam[i][j] = ((1 - (d_hat * r_hat) ** 2)

* np.sin(xi[i][j]) / xi[i][j])

Gam = gamma_2 * (3 / 2) * (termA_gam + termB_gam)

#### Building Collaps Ops with gamma ####

#### but first we have to fix gamma ####

np.fill_diagonal(Gam, 1)

lam, vec = np.linalg.eigh(Gam)

J = []

for i in range(len(vec)):

tot = 0

for j in range(len(vec)):

tot += vec[j][i] * sigmamlist[::-1][j]

if lam[i] > 1e-12:

J.append((lam[i] ** 0.5) * tot)

# else:
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# J.append(0 * tot)

if emission_type == ’independent’:

collaps = sigmamlist # Indeptdent

if emission_type == ’collective’:

collaps = sum(sigmamlist) # Collective

if emission_type == ’corrected collective’:

collaps = J # The Gamma correction

return(collaps)

def V_edit_rn(x,z):

"""

#Returns the shift of 1/dist^n

"""

size = len(x)

y = np.zeros((size, size))

for i in range(size):

for j in range(size):

if i != j:

y[i, j] = (1/x[i, j]**z)

return(y)

def hamiltonian(params, sigmaplist, sigmamlist, shift):

n = params[0] # n - Number of atoms

dlist = params[2] # dlist - Detuning list

V = params[3] # V - energy shiftdue to dipole - dipole

omega = params[4] # Omega - rabi freq

H = [[] for __ in range(len(dlist))]

for k, delta in enumerate(dlist):

hlist = []

hilist = []

for i in range(n):

hx = -delta * (sigmaplist[i] * sigmamlist[i])

hy = (omega / 2) * (sigmaplist[i] + sigmamlist[i])

hlist.append(hx + hy)

for i in range(n):

for j in range(i):
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#### Note this is where you can turn on and off the shift

hix = (V) / (n - 1)

#hix = (V * shift[i][j]) / (n - 1)

hiy = sigmaplist[j] * sigmamlist[j]

hiz = sigmaplist[i] * sigmamlist[i]

hilist.append(hix * hiy * hiz)

H[k] = sum(hlist) + sum(hilist)

return(H)

def me_loop(H, psi0, collaps, oplist):

tlist = np.linspace(0, 10, 100)

datalist = []

for i in range(len(oplist)):

datalist.append([])

for k in range(len(H)):

data1 = qt.mesolve(H[k], psi0, tlist, collaps, oplist)

for i in range(len(oplist)):

datalist[i].append(data1.expect[i][-1])

return(datalist)

def mc_loop(H, psi0, collaps, oplist, tlist):

"""

# Monte Carlo master equation solver

# Input : H - Hamiltonian for our system

# psi0 - Initial State (all down)

# collaps - List of collaps operators

# oplist - List of expectation values

# tlist - time of trajectory

# Output : datalist - List of state evolved through time

"""

ntraj = [1]

datalist = []

for i in range(len(oplist)):

datalist.append([])

for k in range(len(H)):

opts = qt.Options()

opts.seeds = [12345]

data1 = qt.mcsolve(H[k], psi0, tlist, collaps, oplist, ntraj, options =
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opts)

for i in range(len(oplist)):

datalist[i].append(data1.expect[i][-1])

return(datalist)

def mc_jump(H, psi0, tlist, collaps, oplist):

"""

# Monte Carlo master equation solver

# Input : H - Hamiltonian for our system

# psi0 - Initial State (all down)

# collaps - List of collaps operators

# oplist - List of expectation values

# tlist - time of trajectory

# Output : datalist - List of state evolved through time

"""

ntraj = [1]

opts = qt.Options()

opts.seeds = [12345]

results = qt.mcsolve(H[0], psi0, tlist, collaps, oplist, ntraj, options =

opts)

return(results)

def sort_raw_data(n, psi, datalist):

"""

# Data Sorting

# Input : n - Number of atoms

# psi - An array of all binary combinations

# datalist - List of Mesolve data

#

# Output: result - List of |psi|^2 for n excited atoms

"""

tot_datalist = []

for i in range(n + 1):

tot_datalist.append([])

for i in range(len(psi)):

x = sum(psi[i])

for j in range(n + 1):

if x == j:
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tot_datalist[j].append(datalist[i])

result = []

for i in range(n + 1):

result.append([])

for i in range(len(tot_datalist)):

result[i] = [sum(x) for x in zip(*tot_datalist[i])]

return(result)

def quantum_plot(x, y, plot_type, save_str, n, title_r):

"""

# DEPRECIATED

#

#

# Input : x - x cordinate, usually time

# y - y cordinate, usually |psi|^2

# plot_type - "full" includes all psi

# "atom" only n atoms plotted

# save_str - string of where to save file

#

# Output: saves file to save_str and shows plot

"""

### Now for plotting ###

fig = plt.figure()

ax = plt.subplot(111)

colormap = pylab.cm.gist_rainbow

## plotting

# Specify the colormap to use for plotting

#################################

if plot_type == "full":

## Full Plot

pylab.gca().set_color_cycle([

colormap(i) for i in np.linspace(0, 0.9, len(psi))])

for i in range(len(psi)):

ax.plot(dlist, datalist[i], label=’$\psi_{%i}$’ % i)

## Plot total prop
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pylab.plot(dlist, total, label=’total’)

if plot_type == "atom":

### Atom Plot

pylab.gca().set_color_cycle([

colormap(i) for i in np.linspace(0, 0.9, len(y))])

ax = plt.subplot(111)

for i in range(n + 1):

ax.plot(x, y[i], label=’%i Atoms Excited’ % i)

### shrinking plot and legend placement

box = ax.get_position()

ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

ax.legend(ncol=1, loc=’right’,

bbox_to_anchor=[1.4, 0.5],

columnspacing=1.0, labelspacing=0.0,

handletextpad=0.0, handlelength=1.5,

fancybox=True, shadow=True)

### I want to add the spacing in the title

pylab.title("Probability vs. $\delta/\gamma$\nr =

{:0.3f}".format(title_r))

pylab.xlabel(’$\Delta/\gamma$’)

pylab.ylabel(’Probability’)

plt.savefig(save_str)

plt.close()

def save_data(params, all_data, out_str, author, total_time):

with open(out_str,’w’) as out_file:

time = datetime.datetime.now()

line = "# " + author + ", " + time.strftime("%Y-%m-%d %H:%M:%S")+ "\n"

line += ’# Run time : {}’.format(total_time)+ "\n"

line += ’# Parameter list’+ "\n"

line += ’# [0] n - number of atoms --> ’ + str(params[0])+"\n"

line += ’# [1] R - Seperation Distance --> ’ + str(params[1][-1])+"\n"

line += ’# [2] dlist - Detuning list --> ’ + str(params[2][-1])+"\n"

line += ’# [3] V - Rydberg shift --> ’ + str(params[3])+"\n"
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line += ’# [4] omega - Driving --> ’ + str(params[4])+"\n"

line += ’# [5] Etype - Emission type --> ’ + str(params[5])+"\n"

line += ’# [6] tlist - Time --> ’ + "From " + \

str(params[6][0]) +" to "+ str(params[6][-1])+ "\n"

out_file.write(line)

for i in range(len(all_data[0][0])):

line = ""

line += str(params[6][i])

line += "," + str(all_data[0][0][i])

line += "\n"

out_file.write(line)

return

def csv_save_data(params, results, csv_str, author, total_time):

""" Currently Broken! """

line = author + ", " + time.strftime("%Y-%m-%d %H:%M:%S")+ "\n"

line += ’Total Run time : {}’.format(total_time)+ "\n"

line += ’Parameter list’+ "\n"

line += ’[0] n - number of atoms --> ’ + str(params[0])+"\n"

line += ’[1] R - Seperation Distance --> ’ + str(params[1][-1])+"\n"

line += ’[2] dlist - Detuning list --> ’ + str(params[2][-1])+"\n"

line += ’[3] V - Rydberg shift --> ’ + str(params[3])+"\n"

line += ’[4] omega - Driving --> ’ + str(params[4])+"\n"

line += ’[5] Etype - Emission type --> ’ + str(params[5])+"\n"

line += ’[6] tlist - Time --> ’ + "From " + \

str(params[6][0]) +" to "+ str(params[6][-1])+ "\n"

np.savetxt(csv_str, results, header = line, delimiter = ",")
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Appendix C

r-jumps.r

The R programing language was used to do post processing of the quantum jump results.

Jump statistics as well as plotting was done within R.

jumpstat <- function(X, Y) {

count <- 0

for ( i in 1:(length(X)-1)) {

# Jumps up

if (Y[i] < 0.2 && Y[i+1] >= 0.2) {

starttime <- X[i]

count <- count + 1

if (count == 1) { number <- 1 }

else { number <- c(number, count) }

}

# Jumps Down

if (Y[i] >= 0.2 && Y[i+1] < 0.2){

if(count == 1){ jumptime <- X[i] - starttime}

else{jumptime <- c(jumptime, X[i] - starttime)}

}

}

if (count == 0 ){ jumptime <- 0 }

return(jumptime)

}

pullData <- function(Fname) {

dat <- read.csv(Fname, skip=10, header=F)

names(dat) <- c(’time’, ’energy’)

return(dat)
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}

histplot <- function(Fname) {

run <- pullData(Fname)

runjumps <- jumpstat(X = run$time, Y = run$energy)

hist(runjumps, freq = F, # breaks=c(0:100),

main=c(Fname,length(runjumps)),

xlab="jump Length")

}

jumpplot <-function(Fname) {

run <- pullData(Fname)

plot(run, type=’l’,

cex.axis=1.5,

cex.lab=1.5,

main = strsplit(Fname,".csv|data/")[[1]][2],

ylab = "<E>",

ylim=c(0,0.5))

abline(h=0.2, col = ’red’)

}

fig5b <- function(X) {

}

fig5c <- function(X) {

# This needs work to me made into loops and be more general

dat <- list(length(X))

for(i in 1:length(X)) {

dat[[i]] <- pullData(X[i])$energy

}

# Hplt <- list(length(X))

h1 <- hist(dat[[1]], plot=F)

h2 <- hist(dat[[2]], plot=F)

h3 <- hist(dat[[3]], plot=F)

h3x <- h3$mids

h3y <- h3$density

h2x <- h2$mids

h2y <- h2$density
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h1x <- h1$mids

h1y <- h1$density

plot( h1y ~ h1x,

type="o",

col="red",

pch=0,

ylim=c(0,40),

xlab="Excitation Population",

ylab="Density")

points( h2y ~ h2x, type="o", col="blue",pch=1)

points( h3y ~ h3x, type="o", col="green",pch=2)

legend("topright",

title="Seperation Distance",

legend=c(0.1, 0.2,1.0),

col=c("red","blue","green"),

lty=c(1,1,1),

lwd=c(2.5,2.5))

}

bigplot <- function(X) {

num <- length(X)

par(mfrow=c(num,1))

for( i in 1:length(X)) {

# histplot(X[i])

jumpplot(X[i])

}

par(mfrow=c(1,1))

}

avgjumps <- function(Flist) {

avgjumps <- vector()

for( i in 1:length(Flist)) {

run <- pullData(Flist[i])

value <- mean(jumpstat(X = run$time, Y = run$energy))

avgjumps <- c(avgjumps, value)

}

return(avgjumps)

}
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Fnamedat <- function(Flist) {

Fdat <- vector()

for(i in 1:length(Flist)) {

Fdat <- c(Fdat,as.numeric(strsplit(Flist[i],".csv|=")[[1]][2]))

}

return(Fdat)

}

avgplot <- function(Flist) {

x <- Fnamedat(Flist)

y <- avgjumps(Flist)

plot(x,y,

# log="x",

type="o",

cex.axis=1.5,

cex.lab=1.5,

main=’Average jumps length vs R’,

xlab = ’Distance’,

ylab = ’Average Jump Length’)

ind <- 4.894111

abline(h=ind, col=’red’)

}

runFiles <- c(#’data/ind-r=1.0.csv’,

# ’data/r=0.2.csv’,

# ’data/r=0.3.csv’,

# ’data/r=0.4.csv’,

# ’data/r=0.5.csv’,

# ’data/r=0.6.csv’,

# ’data/r=0.7.csv’,

’data/r=0.8.csv’)

# ’data/r=0.9.csv’,

# ’data/r=1.0.csv’,

# ’data/r=10.0.csv’,

# ’data/r=100.0.csv’)

# avgplot(runFiles)
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bigplot(runFiles)

# fig5c(runFiles)
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Appendix D

Mathematica Code

The following code was used to solve and graph the optical Bloch equations for the steady

state of our system, eqs. (5.14) and (5.13).

Independent:

Manipulate[

Plot[Evaluate[\[Rho]ee /.

Quiet@Solve[

2/\[CapitalOmega]^2 (\[CapitalDelta] -

V \[Rho]ee)^2 \[Rho]ee + \[Gamma]^2/(2 \[CapitalOmega]^2) \

\[Rho]ee + (\[Rho]ee - 1/2) == 0, \[Rho]ee]], {\[CapitalDelta], 0,

10}], {{V, 10, "Rydberg Energy Shift"}, 0.1,

20}, { { \[CapitalOmega], 1.5, "Driving"}, 1,

5}, { {\[Gamma] , 1, "Gamma"}, 1, 5}]

Collective:

Manipulate[

Plot[Evaluate[\[Rho]ee /.

Quiet@Solve[

2/\[CapitalOmega]^2 ((\[CapitalDelta] -

V \[Rho]ee)^2 + \[Gamma]^2/

4 (2 (myN - 1) \[Rho]ee - myN)^2) \[Rho]ee + (\[Rho]ee -

1/2) == 0, \[Rho]ee]], {\[CapitalDelta], 0, 10}], {{V, 10,

"Rydberg Energy Shift"}, 0.1,

20}, { { \[CapitalOmega], 1.5, "Driving"}, 1,

5}, { {\[Gamma] , 1, "Gamma"}, 1, 5}, {{myN, 4, "Number of Atoms"},

Range[1, 16]}]
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