Masters Defense

Eitan Lees

July 27, 2015

Overview

- Introduction
- System
 - Hamiltonian
 - Geometry
 - Quantum Dissipation
- QuTiP
- Results
 - Probe Spectrum
 - Cross Correlations
 - Optical Bloch Equations
 - Quantum Jumps
 - Jump Statistics
- Conclusion

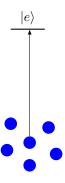
Rydberg Atoms

What's a Rydberg Atom?

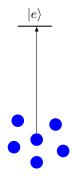
Rydberg Atoms

What's a Rydberg Atom?

- Highly excited ($n \approx 100$)
- Large dipole moment
- Long range dipole interaction

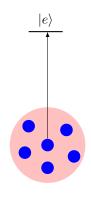


Rydberg interaction for many atoms



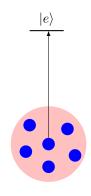
Rydberg interaction for many atoms

Multi atom interaction



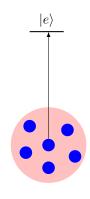
Rydberg interaction for many atoms

- Multi atom interaction
- Surrounding atoms "see" dipole



Rydberg interaction for many atoms

- Multi atom interaction
- Surrounding atoms "see" dipole
- Induced energy shift



Rydberg interaction for many atoms

- Multi atom interaction
- Surrounding atoms "see" dipole
- Induced energy shift
- Atoms are inhibited from excitation
 - ⇒ Rydberg Blockade

Quantum information with Rydberg atoms

M. Saffman and T. G. Walker

Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA

• Quantum Information (Saffman-2010) [1]

Observation of Rydberg blockade between two atoms

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker and M. Saffman*

- Quantum Information (Saffman-2010) [1]
- Observation of Rydberg Blockade (Urban-2009) [2]

Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles

M. D. Lukin, M. Fleischhauer, 1,2 and R. Cote 3

¹ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 ²Fachbereich Physik, Universität Kaiserslautern, D-67663 Kaiserslautern, Germany ³Physics Department, University of Connecticut, Storrs, Connecticut 06269

- Quantum Information (Saffman-2010) [1]
- Observation of Rydberg Blockade (Urban-2009) [2]
- Mesocopic Atomic Ensembles (Lukin-2001) [3]

Collective Quantum Jumps of Rydberg Atoms

Tony E. Lee, 1 H. Häffner, 2 and M. C. Cross 1

¹Department of Physics, California Institute of Technology, Pasadena, California 91125, USA ²Department of Physics, University of California, Berkeley, California 94720, USA (Received 29 September 2011; published 9 January 2012)

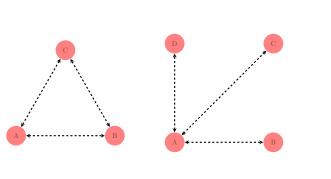
- Quantum Information (Saffman-2010) [1]
- Observation of Rydberg Blockade (Urban-2009) [2]
- Mesocopic Atomic Ensembles (Lukin-2001) [3]
- Collective Quantum Jumps (Lee-2012) [4]

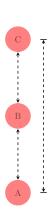
Hamiltonian

$$H = \sum_{j=1}^{N} \left[-\Delta |e\rangle \langle e|_{j} + \frac{\Omega}{2} \left(\sigma_{j+} + \sigma_{j-}\right) \right] + \frac{V}{N-1} \sum_{j < i=1}^{N} |e\rangle \langle e|_{j} \otimes |e\rangle \langle e|_{i}$$
 (1)

- σ_{i-} is the Pauli lowering operator for the jth atom
- ullet Δ is the detuning of the driving laser from the atomic resonance
- Ω is the Rabi frequency
- V is a constant that accounts for the long range interaction between the Rydberg atoms in their excited states.

Geometry

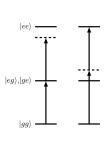


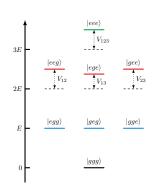


The shape of our system:

- Triangle, square, line ...
- Nearest neighbor interactions
- Lengths varied

Energy Levels





Energy Levels of our system:

- Multi-Photon transitions
- Probe Spectrum and atom-atom cross correlations utilized for insight

Lindblad Superoperator

We introduce dissipation into our system using the Lindblad superoperator

$$\dot{\rho} = \mathcal{L}\rho \tag{2}$$

with

$$\mathcal{L} = \frac{1}{i\hbar} [H_s, \cdot] + \sum_j \frac{\gamma_j}{2} (2\hat{O}_j \cdot \hat{O}_j^{\dagger} - \hat{O}_j^{\dagger} \hat{O}_j \cdot - \cdot \hat{O}_j^{\dagger} \hat{O}_j)$$
(3)

which is derived under the Born-Markov approximation:

- Born \rightarrow weak H_{sR} interaction
- ullet Markov o reservoir has no memory

◆ロト ◆個 ▶ ◆ 重 ト ◆ 重 ・ 夕 Q で 。

Collapse Operators

For our initial simulations we utilize the operator $\hat{O}_j = \sigma_{j-}$, and the master equation,

$$\dot{\rho} = -i\left[H, \rho\right] + \frac{\gamma}{2} \sum_{i=1}^{N} \left(2\sigma_{j-}\rho\sigma_{j+} - \rho\sigma_{j+}\sigma_{j-} - \sigma_{j+}\sigma_{j-}\rho\right) \tag{4}$$

to describe independent spontaneous emission. We then introduced an altered master equation,

$$\dot{\rho} = -i \left[H, \rho \right] + \frac{\gamma}{2} \left(2J_{-}\rho J_{+} - \rho J_{+} J_{-} - J_{+} J_{-} \rho \right) \tag{5}$$

to describe collective spontaneous emission where $\hat{O}_j = J_- = \sum_{j=1}^N \sigma_{j-}$.

 Eitan Lees
 Masters Defense
 July 27, 2015
 10 / 27

Intermediate Collapse Operators

For the intermediate case we use the Lehmberg-Agarwal dipole coupling coefficient

$$\gamma_{ij} = \gamma \frac{3}{2} \left\{ \left[1 - (\hat{d} \cdot \hat{r}_{ij})^2 \right] \frac{\sin \xi_{ij}}{\xi_{ij}} + \left[1 - 3(\hat{d} \cdot \hat{r}_{ij})^2 \right] \left(\frac{\cos \xi_{ij}}{\xi_{ij}^2} - \frac{\sin \xi_{ij}}{\xi_{ij}^3} \right) \right\}$$
 (6)

where

$$\xi_{ij} \equiv k_0 r_{ij} = 2\pi r_{ij}/\lambda_0, \qquad \mathbf{r}_{ij} = r_{ij} \hat{r}_{ij} \equiv \mathbf{r}_i - \mathbf{r}_j$$

The eigenvalues, λ , and eigenvectors, \vec{v} , where calculated for the γ_{ij} matrix and used to determine the collapse operators for our system by

$$\hat{O}_{j} = J_{i} = \sqrt{\lambda_{i}} \sum_{i}^{N} \vec{v}_{ij} \sigma_{j-}$$
 (7)

Eitan Lees Masters Defense July 27, 2015

Matrix Analysis

$$J_i = \sqrt{\lambda_i} \sum_{j}^{N} \vec{\mathbf{v}}_{ij} \sigma_{j-}$$

For large r our emission appears independent (Identity Matrix)

$$egin{pmatrix} 1 & 0 & \dots \ 0 & 1 & \dots \ dots & dots & \ddots \end{pmatrix} \Longrightarrow \ \mathsf{all} \ \lambda_i o 1$$

Matrix Analysis

$$J_i = \sqrt{\lambda_i} \sum_{j}^{N} \vec{\mathbf{v}}_{ij} \sigma_{j-}$$

For large r our emission appears independent (Identity Matrix)

$$egin{pmatrix} 1 & 0 & \dots \ 0 & 1 & \dots \ dots & dots & \ddots \end{pmatrix} \Longrightarrow \ \mathsf{all} \ \lambda_i o 1$$

For small r our emission appears collective (Matrix of ones)

$$\begin{pmatrix} 1 & 1 & \dots \\ 1 & 1 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \Longrightarrow \text{ one nonzero } \lambda \to N$$

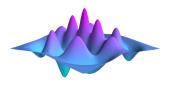
July 27, 2015

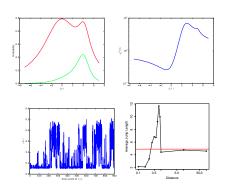
Eitan Lees

QuTiP

Computational Modeling:

- $\bullet \ \, \mathsf{QuTiP} \to \mathsf{Quantum} \ \, \mathsf{Toolbox} \ \, \mathsf{in} \\ \mathsf{Python} \\$
- Developed by Paul Nation and Robert Johansson
- In depth quantum framework
 - mesolve \rightarrow Master equation solver
 - mcsolve → Monte Carlo Quantum Trajectories
- Open source and under active development at qutip.org

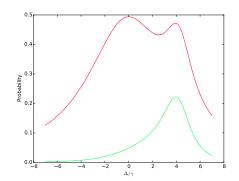




Topics of Research:

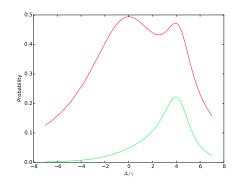
- Probe Spectum
- Crosscorelation
- Quantum Jumps
- Jump Statistics

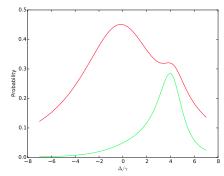
Probe Spectrum: Emission Type



• Probability to excite 1 or 2 atoms for n=2, $\gamma=1$, V=8, and $\Omega=4$ for independent emission

Probe Spectrum: Emission Type

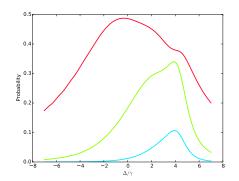




- Probability to excite 1 or 2 atoms for n=2, $\gamma=1$, V=8, and $\Omega=4$ for independent emission
- Same parameters, collective emission

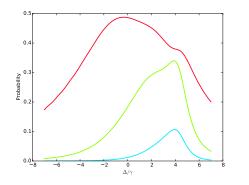
◆ロト ◆個ト ◆差ト ◆差ト を めるぐ

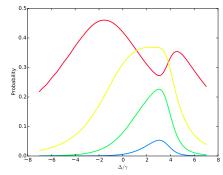
Probe Spectrum: Geometry



• n=3, $\gamma=1$, V=8, and $\Omega=4$ for independent emission. The probability for 1, 2, and 3 atoms being excited

Probe Spectrum: Geometry



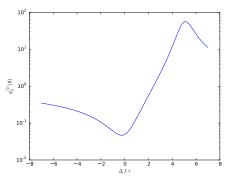


- n = 3, $\gamma = 1$, V = 8, and $\Omega = 4$ for independent emission. The probability for 1, 2, and 3 atoms being excited
- Same parameters, n = 4 Square. The probability for 1, 2, 3, and 4 atoms being excited.

Animations

Animations!

Cross Correlations



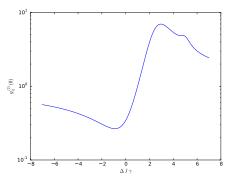
$$g_{ij}^{(2)}(0) = \frac{\langle \sigma_{i+}\sigma_{i-}\sigma_{j+}\sigma_{j-}\rangle}{\langle \sigma_{i+}\sigma_{i-}\rangle\langle \sigma_{j+}\sigma_{j-}\rangle}.$$
 (8)

We would expect to see a bump at

$$\frac{\textit{V}}{\textit{N}-1} \cdot \frac{\textit{\# Pairs}}{\textit{\# Photons}}$$

• n=2, $\gamma=1$, V=10, and $\Omega=4$ for independent emission

Cross Correlations



$$g_{ij}^{(2)}(0) = \frac{\langle \sigma_{i+}\sigma_{i-}\sigma_{j+}\sigma_{j-} \rangle}{\langle \sigma_{i+}\sigma_{i-} \rangle \langle \sigma_{j+}\sigma_{j-} \rangle}. \quad (8)$$

We would expect to see a bump at

$$\frac{V}{N-1} \cdot \frac{\# \text{ Pairs}}{\# \text{ Photons}}$$

- n=3, $\gamma=1$, V=10, and $\Omega=4$ for independent emission
- Same parameters, n = 3 Triangle

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

Mean-Field Theory

A mean-field theory was used to solve the optical Bloch equations

$$\begin{split} &\dot{\bar{\rho}}_{\mathrm{ee}} = -\Omega \operatorname{Im} \bar{\rho}_{\mathrm{eg}} - \gamma \bar{\rho}_{\mathrm{ee}} \\ &\dot{\bar{\rho}}_{\mathrm{eg}} = i \left(\Delta - V \bar{\rho}_{\mathrm{ee}} \right) \bar{\rho}_{\mathrm{eg}} - \frac{\gamma}{2} \bar{\rho}_{\mathrm{eg}} + i \Omega \left(\bar{\rho}_{\mathrm{ee}} - \frac{1}{2} \right) \end{split}$$

but it's important to note a major assumption of this approach which is that the density matrix factorizes $\rho = \bigotimes_{j=1}^{N} \rho_j$.

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Mean-Field Theory

A mean-field theory was used to solve the optical Bloch equations

$$\begin{split} &\dot{\bar{\rho}}_{\mathrm{ee}} = -\Omega \operatorname{Im} \bar{\rho}_{\mathrm{eg}} - \gamma \bar{\rho}_{\mathrm{ee}} \\ &\dot{\bar{\rho}}_{\mathrm{eg}} = i \left(\Delta - V \bar{\rho}_{\mathrm{ee}} \right) \bar{\rho}_{\mathrm{eg}} - \frac{\gamma}{2} \bar{\rho}_{\mathrm{eg}} + i \Omega \left(\bar{\rho}_{\mathrm{ee}} - \frac{1}{2} \right) \end{split}$$

but it's important to note a major assumption of this approach which is that the density matrix factorizes $\rho = \bigotimes_{j=1}^{N} \rho_j$.

Independent

$$0 = \frac{2}{\Omega} \left(\Delta - V \bar{\rho}_{ee} \right)^2 \bar{\rho}_{ee} + \frac{\gamma^2}{2\Omega} \bar{\rho}_{ee} + \Omega \left(\bar{\rho}_{ee} - \frac{1}{2} \right)$$
 (9)

Mean-Field Theory

A mean-field theory was used to solve the optical Bloch equations

$$\begin{split} &\dot{\bar{\rho}}_{\mathrm{ee}} = -\Omega \operatorname{Im} \bar{\rho}_{\mathrm{eg}} - \gamma \bar{\rho}_{\mathrm{ee}} \\ &\dot{\bar{\rho}}_{\mathrm{eg}} = i \left(\Delta - V \bar{\rho}_{\mathrm{ee}} \right) \bar{\rho}_{\mathrm{eg}} - \frac{\gamma}{2} \bar{\rho}_{\mathrm{eg}} + i \Omega \left(\bar{\rho}_{\mathrm{ee}} - \frac{1}{2} \right) \end{split}$$

but it's important to note a major assumption of this approach which is that the density matrix factorizes $\rho = \bigotimes_{j=1}^{N} \rho_j$.

Independent

$$0 = \frac{2}{\Omega} \left(\Delta - V \bar{\rho}_{ee} \right)^2 \bar{\rho}_{ee} + \frac{\gamma^2}{2\Omega} \bar{\rho}_{ee} + \Omega \left(\bar{\rho}_{ee} - \frac{1}{2} \right)$$
 (9)

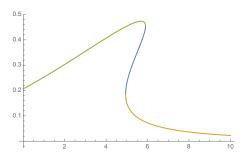
Collective

$$0 = \left(\bar{\rho}_{ee} - \frac{1}{2}\right) + \frac{2}{\Omega^2}\bar{\rho}_{ee}\left[(\Delta - V\bar{\rho}_{ee})^2 + \frac{\gamma^2}{4}(2(N-1)\bar{\rho}_{ee} - N)^2\right] \quad (10)$$

Mathematica Widget

Interactive Mathematica Notebook (Demo)

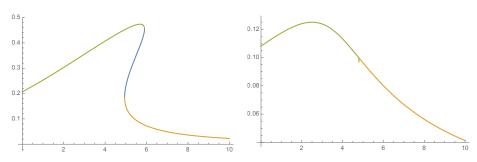
Bloch Solutions



• The independent case for $V=12, \Omega=3, \gamma=1$

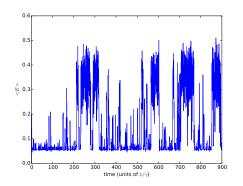
 Eitan Lees
 Masters Defense
 July 27, 2015
 21 / 27

Bloch Solutions



- The independent case for $V=12, \Omega=3, \gamma=1$
- The collective case for $V=20, \Omega=5, \gamma=1, N=16$

Quantum Jumps

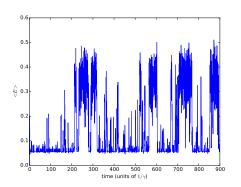


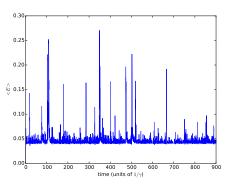
• n = 12, V = 10, R = 0.5, $\Delta/\gamma = 3.5$ for intermediate emission γ_{ij}

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り Q で

 Eitan Lees
 Masters Defense
 July 27, 2015
 22 / 27

Quantum Jumps

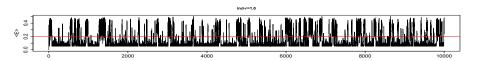




- n=12, V=10, R=0.5, $\Delta/\gamma=3.5$ for intermediate emission γ_{ij}
- Same parameters, R = 0.115

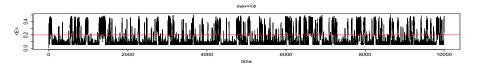
↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९○

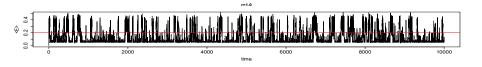
Eitan Lees Masters Defense July 27, 2015 22 / 27



• $\emph{n}=$ 16, $\emph{V}=$ 10, $\Omega=$ 1.5, $\Delta/\gamma=$ 3.5, with intermediate emission γ_{ij}

Eitan Lees Masters Defense July 27, 2015 23 / 27

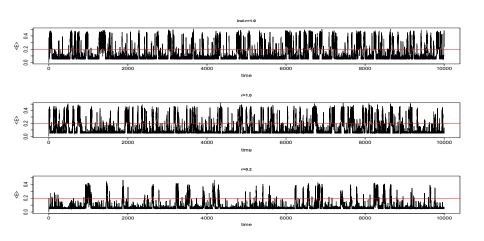




ullet n= 16, V= 10, $\Omega=$ 1.5, $\Delta/\gamma=$ 3.5, with intermediate emission γ_{ij}

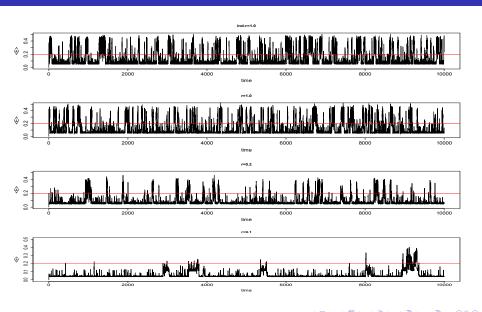
23 / 27

Eitan Lees Masters Defense July 27, 2015

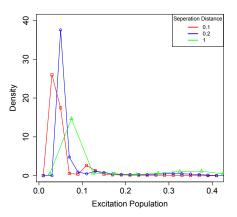


• $\emph{n}=$ 16, $\emph{V}=$ 10, $\Omega=$ 1.5, $\Delta/\gamma=$ 3.5, with intermediate emission γ_{ij}

Eitan Lees Masters Defense July 27, 2015 23 / 27



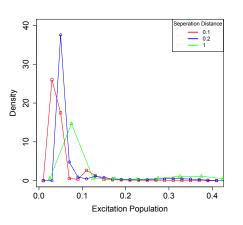
Jump Statistics

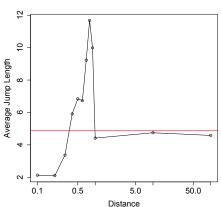


ullet n= 16, V= 10, $\Omega=$ 1.5, $\Delta/\gamma=$ 3.5, with intermediate emission γ_{ij}

Eitan Lees Masters Defense July 27, 2015 24 / 27

Jump Statistics





ullet n= 16, V= 10, $\Omega=$ 1.5, $\Delta/\gamma=$ 3.5, with intermediate emission γ_{ij}

Eitan Lees Masters Defense July 27, 2015 24 / 27

Conclusion

Preliminary Analysis:

- Introduced a variable Rydberg interaction V_{ij} and studied probe spectra for different geometric configurations
- Studied atom-atom cross correlations, $g_{ij}^{(2)}(0)$, to look for multiphoton excitations.

 Eitan Lees
 Masters Defense
 July 27, 2015
 25 / 27

Conclusion

Preliminary Analysis:

- Introduced a variable Rydberg interaction V_{ij} and studied probe spectra for different geometric configurations
- Studied atom-atom cross correlations, $g_{ij}^{(2)}(0)$, to look for multiphoton excitations.

Collective Jump Simulations:

- Reproduced quantum jumps and explored the effects of collective emission
- Explored the effects of a tunable emission type γ_{ij} and saw jumps diminished for short seperations distances

Eitan Lees Masters Defense July 27, 2015 25 / 27

Conclusion

Preliminary Analysis:

- Introduced a variable Rydberg interaction V_{ij} and studied probe spectra for different geometric configurations
- Studied atom-atom cross correlations, $g_{ij}^{(2)}(0)$, to look for multiphoton excitations.

Collective Jump Simulations:

- Reproduced quantum jumps and explored the effects of collective emission
- Explored the effects of a tunable emission type γ_{ij} and saw jumps diminished for short seperations distances

Future research:

- Explain enhanced jump length for 0.3 < R < 1.0
- Further characterize jump transition
 - Oscillatory behavior of γ_{ii}
- Explain why collective emission turns off jumps
 - Examine assumptions made in analysis

Thanks!

- James Clemens for much needed advising and research help.
- Perry Rice and Samir Bali for being on my committee and teaching great courses.
- The entire Miami Physics Department and graduate students for help and support.
- Any Questions?

Eitan Lees Masters Defense July 27, 2015 26 / 27

References

M. Saffman, T. G. Walker, and K. Mølmer.

Quantum information with rydberg atoms.

Rev. Mod. Phys., 82:2313-2363, Aug 2010.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz,

T. G. Walker, and M. Saffman.

Observation of rydberg blockade between two atoms.

Nature Physics, 5:110-114, 2009.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac. and P. Zoller.

Dipole blockade and quantum information processing in mesoscopic atomic ensembles.

Phys. Rev. Lett., 87:037901, Jun 2001.

Tony E. Lee, H Häffner, and M. C. Cross.

Collective quantum jumps of rydberg atoms.

Phys. Rev. Lett., 108:023602, 2012.

Eitan Lees Masters Defense July 27, 2015 27 / 27