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Rydberg Atoms

|e〉
What’s a Rydberg Atom?

Highly excited (n ≈ 100)

Large dipole moment

Long range dipole interaction
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Multiple Rydberg Atoms

|e〉
Rydberg interaction for many atoms

Multi atom interaction

Surrounding atoms “see” dipole

Induced energy shift

Atoms are inhibited from excitation
⇒ Rydberg Blockade
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Current Rydberg Research

Quantum Information (Saffman-2010) [1]

Observation of Rydberg Blockade (Urban-2009) [2]

Mesocopic Atomic Ensembles (Lukin-2001) [3]

Collective Quantum Jumps (Lee-2012) [4]
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Hamiltonian

H =
N∑
j=1

[
−∆|e〉〈e|j +

Ω

2
(σj+ + σj−)

]
+

V

N − 1

N∑
j<i=1

|e〉〈e|j ⊗|e〉〈e|i (1)

σj− is the Pauli lowering operator for the jth atom

∆ is the detuning of the driving laser from the atomic resonance

Ω is the Rabi frequency

V is a constant that accounts for the long range interaction between
the Rydberg atoms in their excited states.
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Geometry
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C
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The shape of our system:

Triangle, square, line ...

Nearest neighbor interactions

Lengths varied
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Energy Levels
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Energy Levels of our system:

Multi-Photon transitions

Probe Spectrum and atom-atom cross correlations utilized for insight
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Lindblad Superoperator

We introduce dissipation into our system using the Lindblad superoperator

ρ̇ = Lρ (2)

with

L =
1

i~
[Hs , · ] +

∑
j

γj
2

(2Ôj · Ô†j − Ô†j Ôj · − · Ô†j Ôj) (3)

which is derived under the Born-Markov approximation:

Born → weak HsR interaction

Markov → reservoir has no memory
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Collapse Operators

For our initial simulations we utilize the operator Ôj = σj−,
and the master equation,

ρ̇ = −i [H, ρ] +
γ

2

N∑
j=1

(2σj−ρσj+ − ρσj+σj− − σj+σj−ρ) (4)

to describe independent spontaneous emission. We then introduced an
altered master equation,

ρ̇ = −i [H, ρ] +
γ

2
(2J−ρJ+ − ρJ+J− − J+J−ρ) (5)

to describe collective spontaneous emission where Ôj = J− =
∑N

j=1 σj− .
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Intermediate Collapse Operators

For the intermediate case we use the Lehmberg-Agarwal dipole coupling
coefficient

γij = γ
3

2

{
[1− (d̂ · r̂ij)2]

sinξij
ξij

+ [1− 3(d̂ · r̂ij)2]

(
cosξij
ξ2ij
− sinξij

ξ3ij

)}
(6)

where
ξij ≡ k0rij = 2πrij/λ0, rij = rij r̂ij ≡ ri − rj

The eigenvalues, λ, and eigenvectors, ~v , where calculated for the γij
matrix and used to determine the collapse operators for our system by

Ôj = Ji =
√
λi

N∑
j

~vijσj− (7)
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Matrix Analysis

Ji =
√
λi

N∑
j

~vijσj−

For large r our emission appears independent (Identity Matrix)1 0 . . .
0 1 . . .
...

...
. . .

 =⇒ all λi → 1

For small r our emission appears collective (Matrix of ones)1 1 . . .
1 1 . . .
...

...
. . .

 =⇒ one nonzero λ→ N
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QuTiP

Computational Modeling:

QuTiP → Quantum Toolbox in
Python

Developed by Paul Nation and
Robert Johansson

In depth quantum framework

mesolve → Master equation
solver
mcsolve → Monte Carlo
Quantum Trajectories

Open source and under active
development at qutip.org

Eitan Lees Masters Defense July 27, 2015 13 / 27

qutip.org


Results
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Probe Spectrum: Emission Type
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Probability to excite 1 or 2 atoms for n = 2, γ = 1, V = 8, and
Ω = 4 for independent emission

Same parameters, collective emission
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Probe Spectrum: Geometry
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probability for 1, 2, and 3 atoms being excited
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atoms being excited.
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Animations

Animations!
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Cross Correlations

8 6 4 2 0 2 4 6 8
∆ / γ

10-2

10-1

100

101

102

g
(2

)
ij

(0
)

g
(2)
ij (0) =

〈σi+σi−σj+σj−〉
〈σi+σi−〉〈σj+σj−〉

. (8)

We would expect to see a bump at

V
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n = 2, γ = 1, V = 10, and Ω = 4 for independent emission
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Mean-Field Theory

A mean-field theory was used to solve the optical Bloch equations

˙̄ρee = −Ω Im ρ̄eg − γρ̄ee
˙̄ρeg = i (∆− V ρ̄ee) ρ̄eg −

γ

2
ρ̄eg + iΩ

(
ρ̄ee −

1

2

)
but it’s important to note a major assumption of this approach which is
that the density matrix factorizes ρ =

⊗N
j=1 ρj .

Independent

0 =
2

Ω
(∆− V ρ̄ee)2 ρ̄ee +

γ2

2Ω
ρ̄ee + Ω

(
ρ̄ee −

1

2

)
(9)

Collective

0 =

(
ρ̄ee −

1

2

)
+

2

Ω2
ρ̄ee

[
(∆− V ρ̄ee)2 +

γ2

4
(2(N − 1)ρ̄ee − N)2

]
(10)
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Mathematica Widget

Interactive Mathematica Notebook
(Demo)
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Bloch Solutions
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Quantum Jumps
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Same parameters, R = 0.115
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Long Quantum Jumps
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Jump Statistics
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Conclusion

Preliminary Analysis:

Introduced a variable Rydberg interaction Vij and studied probe
spectra for different geometric configurations

Studied atom-atom cross correlations, g
(2)
ij (0), to look for

multiphoton excitations.

Collective Jump Simulations:

Reproduced quantum jumps and explored the effects of collective
emission

Explored the effects of a tunable emission type γij and saw jumps
diminished for short seperations distances

Future research:

Explain enhanced jump length for 0.3 < R < 1.0

Further characterize jump transition
- Oscillatory behavior of γij
Explain why collective emission turns off jumps
- Examine assumptions made in analysis
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